Math 246A Lecture 10 Notes

Daniel Raban

October 17, 2018

1 Exact 1-Forms, Harmonic Functions, and Local Behavior

1.1 Exact 1-forms

A 1-form on Ω is an expression $\omega = P(x, y)dx + Q(x, y)dy$ where $P, Q : \Omega \to \mathbb{C}$ are continuous.

$$\int_{\gamma} \omega = \int_{\gamma} P \, dx + \int_{\gamma} Q \, dy = \int_{0}^{1} P(z(t)) x'(t) \, dt + \int_{0}^{1} Q(z(t)) y'(t) \, dt,$$

where $\gamma = \{ z(t) : 0 \le t \le 1 \}.$

 ω is independent of γ if for all γ ,

$$\int_{\gamma} \omega = \int_{\gamma'} \omega$$

if $\gamma(0) = \gamma'(0)$ and $\gamma(1) = \gamma'(1)$.

Theorem 1.1. The following are equivalent.

- 1. $\int_{\gamma} \omega$ is independent of path
- 2. there exists $U: \Omega \to \mathbb{C}, \ U \in C^1$ such that $\frac{\partial U}{\partial x} = P$ and $\frac{\partial U}{\partial y} = Q$.
- 3. $\int_{\gamma} \omega = 0$ for all closed paths γ ($\gamma(0) = \gamma(1)$) consisting of horizontal and vertical segments.

Proof. (1) \implies (2): Fix $z_0 \in \Omega$. Let $\gamma_{z_0,z}$ be a path with $\gamma_{z_0,z}(0) = z_0$ and $\gamma_{z_0,z}(1) = z$. Set

$$U(z) = \int_{\gamma_{z_0,z}} \omega_z$$

By the hypothesis, U is independent of the path $\gamma_{z_0,z}$. Let $h \in \mathbb{R}$. Then

$$U(z+h) - U(z) = \int_{z}^{z+h} P(x,y) \, dx.$$

Taking $h \to 0$, we get $\frac{\partial u}{\partial x} = P(x, y)$. Likewise, $\frac{\partial U}{\partial y} = Q$.

- (2) \implies (1): We omit this.
- (1) \implies (3): (3) is a special case of (1).

(3) \implies (2): Since Ω is connected, we can connect any two points by a polygonal path with horizontal and vertical segments. Proceed with the same argument as before. \Box

Corollary 1.1. Let $f \in H(\Omega)$. Then

$$\int_{\gamma} f(z) \, dz = 0$$

for all closed paths γ if and only if there exists $F \in H(\Omega)$ such that F' = f.

Example 1.1. Let $\Omega = \{z : 0 < |z - a| < R\}$. Let f(z) = 1/(z - a), and let γ be a circle around a. Then

$$\int_{\gamma} f(z) \, dz = 2\pi i$$

That is,

$$\int_{0}^{2\pi} \frac{1}{e^{it} - a} i e^{it} \, dt = 2\pi i$$

1.2 Harmonic functions

Definition 1.1. A function $u(x, y) : \Omega \to \mathbb{C}$ is harmonic if $u \in C^2$, $\Delta u = u_{xx} + u_{yy} = 0$. **Example 1.2.** Let $f \in H(\Omega)$ and $u = \operatorname{Re}(f)$, so f = u + iv. The Cauchy-Riemann equations say that $u_x = v_y$ and $u_y = -v_x$. So u is harmonic.

Theorem 1.2. Let $u : \Omega \to \mathbb{R}$ be harmonic. Define the conjugate differential $*du := \frac{\partial u}{\partial y}dx + \frac{\partial u}{\partial x}dy$.¹ There exists $f \in H(\Omega)$ such that $u = \operatorname{Re}(f)$ if and only if $\int_{\gamma} *du = 0$ for all closed curves γ . This is also equivalent to the same condition but with closed curves consisting of vertical and horizontal segments.

Proof. These are all equivalent to the existence of a function v such that $v_x = -u_y$ and $v_y = u_x$.

Example 1.3. Let $\Omega = \{z : r < |z| < R\}$, and let $u = \log |z| = \frac{1}{2} \log(x^2 + y^2)$. Then

$$u_x = \frac{x}{x^2 + y^2}, \qquad u_y = \frac{y}{x^2 + y^2}.$$

Check yourself that $u_{xx} + u_{yy} = 0$. Then $*du = (ydx - xdy)/(x^2 + y^2)$. Let γ be the circle |z| = (r+R)/2. Then

$$\int_{\gamma} *du = i \int_{\gamma} \frac{1}{z} \, dz$$

This is not the real part of an analytic function.

¹This is the Hodge star operator.

1.3 Local behavior of analytic functions

Theorem 1.3. Let $f, g \in H(\Omega)$ for some domain Ω . Suppose $z_0 \in \Omega$, and $(z_j)_{j \in \mathbb{N}}$ is in $\Omega \setminus \{z_0\}$ with $z_j \to z_0$, and suppose $f(z_j) = g(z_j)$. Then f = g in Ω .

Proof. Let h = f - g. Then h has a power series expansion

$$h(z) = \sum_{n=0}^{\infty} z_n (z - z_0)^n$$

in $\{z : |z - z_0| < R\} \subseteq \Omega$. Let a_{N_0} be the first a_n which is nonzero; if this doesn't exist, $a_n = 0$ for all n, and we are done. Then

$$H(z) = \frac{h(z)}{(z - z_0)^{N_0}} = a_{N_0} + \sum_{k=1}^{\infty} a_{N_0 + k} (z - z_0)^k$$

converges in $\{z : |z - z_0| < R\}$. But $H(z_j) = 0$ for all j, and $a_{N_0} = H(z_0) = 0$. This is a contradiction.

Therefore, the set $U = \{z \in \Omega : h = 0 \text{ on a disc containing } z_0\} \neq \emptyset$. U is open. U is closed relative to Ω because if $(z_j) \in U$ converges to z_0 , then the previous argument gives us that $z \in U$. So U is a nonempty open and closed subset of a connected set, Ω . Hence, $U = \Omega$.